哈尔滨三维GIS开发_2.5D-GIS技术
发布日期:2021-04-15 浏览次数:750

2.2GIS三维空间数据模型
2.2.1空间数据模型分类
三维数据结构同二维一样也存在栅格和矢量两种形式。栅格结构使用空间索引系统,将地理实体的三维空间分成细小单元(体元)。三维矢量数据结构表示方法有很多,将实体抽象为点、线、面、体,由面构成体。其中运用最为普遍的是具有拓扑关系得三维边界表示法和八叉树表示法。根据三维空间模型对地学空间目标的集合特性的描述是以表面描述方式还是以空间剖分方式,可以分为体元模型和面元模型。
(1)体元模型
常用的体模型是将三维空间对象视为体单元的集合。体单元是简单的三维基本单元,如立方体、球、圆柱体等。将三维空间对象视为这些基本对象经过一些基本操作(如交、并、差等)后的组合体。体模型数据结构包括三维栅格结构、八叉树结构、结构实体几何模型和四面体格网模型[23]。对于建筑物,本文不关注其中的拓扑结构,仅对其整体和外部形状感兴趣,综合考虑到建筑物的形状特点、3D建模的精度要求,如果用Octree建模则难以保证精度,用TEN建模则会增加许多无意义的数据,因此CSG是进行建筑物建模的一个较好选择,本文重点讲述结构实体几何模型(CSG)。结构实体几何模型(CSG)类似于机械制造方法,最早由Voelcker和Requicha提出,是将简单的几何形体(如球、圆柱、圆锥等体素)通过正则运算(交、并、差)来构造复杂的3D目标。一个复杂目标可以描述为一棵CSG树,这棵树的终端结点为基本体素(如立方体、圆柱、圆锥),而中间结点(枝节点)为正则集合运算的结点。
CSG树以根节点作为查询和操作的基本单元,它对应一个三维空间目标。一个复杂的空间形体,可以由一些比较简单,规则的空间形体经过布尔运算而得到。
CSG模型的优点是:方法简单,适合对复杂目标采用分治算法;具有唯一性和明确性;没有冗余信息,必要时可以在目标和体素上附加有关属性。其缺点是:一个3D空间目标的CSG是不唯一的,且不描述点、边、环、面的拓扑关系。
(2)面元模型
面模型数据结构主要包括规则格网模型Grid、不规则三角网TIN和边界表示模型B-Rep。
规则格网模型Grid用一组大小相同的网格描述地形表面。它能充分表现高程的细节变化,拓扑关系简单,算法容易实现,空间操作及存储方便。但占用的存储空间较大,不规则的地面特征与规则的数据表示之间可能不协调,在地形平坦的地方存在大量的数据冗余。
不规则三角网(TIN)是由分散的地形点按照一定的规则构成的一系列不相交的三角形,三角面的形状和大小取决于不规则分布的观测点的密度和位置。TIN实现三维地形的显示过程就是确定哪三个点构成一个最佳三角形,并使每个离散点都成为三角形的顶点。TIN的优点是存储效率高,数据结构简单,与不规则的地面特征和谐一致,可以表示细微特征或叠加任意形状的区域边界。当表面粗糙或变化剧烈时,TIN能包含大量的数据点,而当表面相对单一时,在同样大小的区域,TIN只需少量的数据点。TIN比Grid复杂,它不仅要存储每个点的属性数据,还要存储其平面坐标、节点连接的拓扑关系,难以与矢量和栅格数据结构进行联合分析。
边界表示模型(B-Rep)是以物体边界为基础来描述几何形状,一般采用矢量法表达三维目标,与二维GIS所采用的矢量结构在原理上一致。每个物体均由有限个面构成,每个面由有限条边围成,而每条边由构成边的顶点表示。在边界表示法中,空间实体的几何信息和拓扑信息是分开存储的,其数据结构可以用体表、面表、弧表、边表、顶点表等五个层次来描述,因此在进行坐标变换时,仅需改变空间点的坐标,空间实体间的拓扑关系可以保持不变。B-Rep模型强调3D空间目标的外部细节,通过3D目标属性表、面-体关系表、边-点-面关系表和点坐标表来详细记录构成3D空间目标的所有几何信息和拓扑信息。其优点为:几何信息与拓扑信息分开存储,完整清晰;便于基于面、边的空间查询与计算;易于与2D图形、3D线框模型、有限元网格剖分及3D曲面造型接口。其缺点是:数据量大,数据关系复杂;对3D空间目标的整体描述能力差,不能反映目标的构造过程;不能记录目标组成元素的原始特征。

故障案例
案例一、2018年12月7日,某AT所271断路器电调端远动操作,开关拒动。经检修车间人员检查后发现电压互感器与GIS高压开关柜连接插座部位处有放电烧伤痕迹,现场测量271断路器气室压力为0.009 bar,远低于正常值的0.06 bar。后续检查发现电压互感器内锥绝缘橡胶体处烧损严重,同时GIS高压开关柜电压互感器插座损伤严重,此损伤破坏了断路器气室的密封,最终导致断路器气室漏气,使得压力低于标准值,详见下图故障现场示意图的案例一。另外对电压互感器本体进行电气预防性试验发现,其绝缘电阻、绕组直流电阻、交流耐压和励磁特性等试验项口符合国家和铁路总公司相关要求。但因GIS高压开关柜本体设备损坏程度较大,现场不具备修复条件,返厂维修后该所设备已恢复正常运行。
案例二(实物见下图),2018年12月22日3时30分,某牵引所馈线开关213断路器在天窗点结束后送电失败,距离I段保护动作,故障公里标指向其供电臂上的某分区所。经检修车间人员检查,发现此分区所271 GIS高压开关柜的电压互感器与开关柜连接插座部位处有显著放电烧伤痕迹,GIS高压开关柜气室压力正常。后续拆解检查发现电压互感器内锥绝缘橡胶体处和GIS高压开关柜电压互感器插座烧损严重,但电压互感器本体电气预防性试验符合相关要求,详见下图故障现场示意图的案例二。由设备厂家现场对此GIS高压开关柜进行处置后,设备恢复正常运行。此故障非正常供电状况时间持续45个小时。
案例分析
结合故障案例中的案例一和案例二可以得出以下几个特点:
1)故障的起因并非由于电压互感器和GIS高压开关柜本身的电气参数不符合技术条件,或现场电气环境参数超过设备允许值而造成的设备损坏,故障发生后单体设备的电气参数仍然符合国家相关标准和铁总要求;
2)故障的主要原因都是由于电压互感器高压接头处的橡胶绝缘体与高压开关柜插座处的连接部位发生了绝缘击穿导致了故障的发生;
3)此故障有可能会造成设备事故扩大化,从而造成更加恶劣的影响。
综上所述,可以判断导致故障的起因应该为电压互感器与GIS高压柜连接部位存在长期的电树枝现象。电树枝是指任何固体类介质在高强度电场作用下,其绝缘部位的某一区域会形成树枝状的局部损坏,在此电场的长时间作用下,此树枝通道会顺着电场的方向贯穿于整个绝缘,最终形成绝缘击穿破坏。
故障发生的大致经过如下:电压互感器在与GIS高压开关柜插座安装时会形成气体的压缩,此压缩气体不会因施工中采取任何限制措施或改进施工工艺而消失;由于施工工艺和设备厂家作业指导书的要求,电压互感器橡胶绝缘体部位会涂抹一定量的绝缘硅脂油,以保证安装的顺畅,并起到填补二者之间空隙的作用,并起到尽量减少电树枝现象发生的可能性;但在施工中,绝缘硅脂油的均匀涂抹以完全避免电树枝现象的操作根本无法达成,因此电树技现象的存在具有必然性,但发展的速度是有明显区别的,且在施工中如果不对压缩气体进
行限制,即在安装过程中没有采取放气的措施,大的压缩空气压力,会促进电树技现象的发展,最终的结果就是加速导致绝缘部分的击穿;击穿过程会产生大的短路电流,同时产生较大的热量释放,会促进压缩空气的压力快速发展,当超过柜体允许限定值,有可能会破坏GIS高压开关柜的柜体,造成故障扩大;短路电流随着对应断路器的跳闸而结束,整个故障结束。