贵阳gis价格_web gis
发布日期:2020-09-28 浏览次数:691

1. 2软件实现
软件主界面主要分为五大功能模块:数据加载、数据操作、数据检查、统计输出、系统帮助等,此外,还设有快捷功能区,即悬浮工具条,主要是数据操作常用的功能按钮。
在普查数据检查界面,勾选相应的检查项,执行数据检查。运行的过程中会实时显示每一个检查项规则的运行状态以及总体的完成进度。检查结束后,即将可视化范围内的所有错误要素加载到当前视图中,以方便整改人员对错误原因进行查看,通过单击错误定位可以定位到每一个错误要素,并查看其详细的属性信息。
可查看每一项检查结果文件的存放位置以及文件生成时间,也可删除不需要的检查结果,
避免空间资源的占用。
通过配置检查规则对软件检查规则中的检查参数、数据字典进行管理配置。
4. 2测绘资料应用分析子系统
测绘资料应用分析子系统在北京市政务版电子地图数据的基础上,结合北京市热力集团实际情况,基于GIS开发的系统。软件主要实现GIS基本功能、热力管线查询定位、地下管线统计、地下管线空间分析、三维场景展示、二三维联动、管线三维基本空间分析、离线包申请审核管理、运维管理、GPS竣工测量、智能移动设备管理、移动设备轨迹监控和现场踏勘工作统计等功能。
4. 2. 1技术路线
数据外部交换通过数据共享与交换平台,实现数据的可靠、稳定、及时的交换,各个应用终端采用客户端浏览器的方式根据不同权限进行数据的查询、浏览、统计等操作。
系统部署运行在北京市热力工程设计有限责任公司与外界物理隔离的专用局域网内,整个系统分为基础设施层、数据层、中间件层和系统层四个层次。
基础设施层主要包括政务内网网络环境、软硬件支撑环境安装部署,主要用于满足系统运行的必要环境。数据层包括地下管线成果数据库,及基于成果库加工的地下管线三维数据库,元数据库、GIS辅助数据库及运行数据库,上述数据库除运行数据库外,其他数据库跟地下管线数据管理维护系统共用。中间件层包括二维GIS中间件、三维GIS中间件和数据库引擎,一方面支持空间数据库的读写,一方面支持系统的二三维功能开发与运行。系统层主要工作界面与工具,包括与地下管线数据共享、查询、统计、分析相关的功能模块。

基于3DGIS技术的无人机测图像控点布设方案
近年来,随着航空摄影测量的发展,特别是无人机技术的飞速发展,以无人机为平台的低空摄影测量得到广泛应用。无人机摄影测量具有操控简单、效率高、能及时地获取有效的数据信息、成本低、受地理环境影响小等优点,配合航拍软件可快速获取对地影像,已经是现有的航天、航空遥感和地面遥感系统不可缺少的弥补手段。无人机摄影测量在近几年发展势头日渐迅猛,与此同时,如何提高无人机摄影测量的成图精度,同时如何在保证成果精度的同时减少布设像控点工作量等问题也备受人们关注。
像控点布设是航空摄影测量中的重要环节,但是由于无人机质量轻以及外界因素的影响,无人机在作业过程中姿态不稳定,获取的影像存在重叠率不规则和影像倾角过大等特点,因此无人机地面像控点的数量和分布和以往的传统航空测量的要求有所不同。近年来,有很多学者展开了提高无人机测图精度的研究。
本文使用FD-130B六旋翼无人机采集了沿海某村庄影像,通过分析不同的像控点数量及分布与无人机航测成果质量之间的关系,分析验证了像控点数量及分布与空中三角测量、数字正射影像图(DOM)、数字高程模型(DEM)之间的关系,研究了无人机航测大比例尺地图所需控制点数量及分布,为无人机在航空摄影测量中满足成图需求提供有效参考。
1、研究数据
1.1 研究区域
研究区域位于沿海地区浙江省宁波市象山县石浦镇树桥头村,总面积约0. 4 km2,居民楼大多都是二三层楼房,交通便利,地势平坦,建筑物较密集,沿街道建设。
1. 2影像数据及像控点信息
影像数据获取使用富地FD-130B六旋翼无人机(如图1所示)飞行平台,最大载荷为5 kg,云台可以搭载各种快拆式传感器,本次实验无人机搭载FD-5120倾斜相机进行影像采集,机身装置4块容量为22 000 mA蓄电池,有效作业时间30分钟,POS数据定位精度水平精度小于±0. 10 m,垂直精度小于±0. 10 m。采用常规RTK测量模式进行像片控制点采集,平面和高程精度均优于±0.01 m,像片控制点共33个,坐标系统为地方独立平面坐标系和1985国家高程基准。